

NIST Meeting 3/28/03
Gianfranco de Feo, Ph.D.
Associate Director, Genomics
Collaborations

RNA Standards in Micro-array expts

- Scope: What do you want from the standards?
 - Quality control
 - Sample
 - Procedure
 - Arrays
 - Normalization
 - Quantitative accuracy
- Goal: Consistency of Data
 - Within platform
 - Across platforms

Steps to control

- Sample Acquisition and preparation (from sample to RNA)
 - Acquisition
 - Storage and handling
 - RNA isolation

'Target' Preparation

- 'cDNA' or the like preparation
- Labeling and amplification
- Fragmentation and hyb cocktail QC

Hybridization and Scanning

- Hybridization, wash and stain
- Scanning
- Quantitative metric

Sample Acquisition and Preparation

- Quantity and Quality of RNA
- Reproducibility: consistency of RNA pool
- Stabilization of Sample
- 2. Handling conditions
- 3. Storage conditions

- 1. Reproducibility
- 2. Quantity
- 3. Quality of RNA
- Final qualification of sample
- Quantity and quality of RNA

Target Preparation: From RNA to labeled product

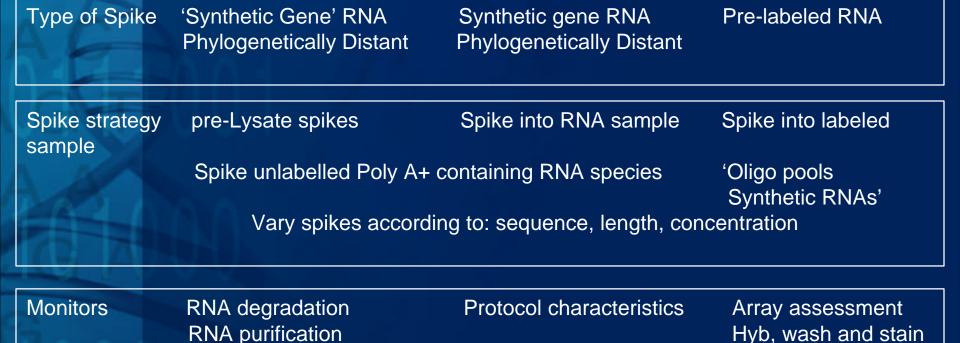
- Quantity and Quality of cDNA
- Reproducibility: consistency of cDNA pool
- 1. Amplification efficiency
- 2. Representation of final pool
- 3. Labeling efficiency
- 4. Consistency

- 1. Reproducibility
- 2. Quantity
- Quality of labeled target
- Final qualification of sample
- 2. Quantity and quality of RNA
- 3. Reproducibility of pool

Array Hybridization and Scanning

- 1. 'In process' QC
- 2. 'Probe' Analysis
- 3. Consistency of hyb
- 1. Consistency of signals
- 2. Standard protocols

- 1. Reproducibility
- 2. Image defect tolerances
- 3. Quality of hybridization
- Final qualification of results
- 2. Normalization approach



RNA Controls

- Can be used to assess:
 - Most steps of process (including array)
 - Sample Acquisition?
 - Quantitative Accuracy
 - Normalization strategies
- Types:
 - Poly A+ controls
 - Hybridization controls
 - Pre-labeled transcripts
 - Pre-labeled oligonucleotides
 - Complex sample

Use of RNA spikes

- Each set of spikes intended to assess a specific part of the procedure
- Not all spikes required, spikes in earlier stages can be used to assess later stagesfymetrix

Poly A+ and pre-labeled Spike Contols

- Advantage: Can control the number, amount and type of spike-ins, insample control.
 - Quantitative assessments
 - Dynamic range (linearity of response)
 - Normalization (?)

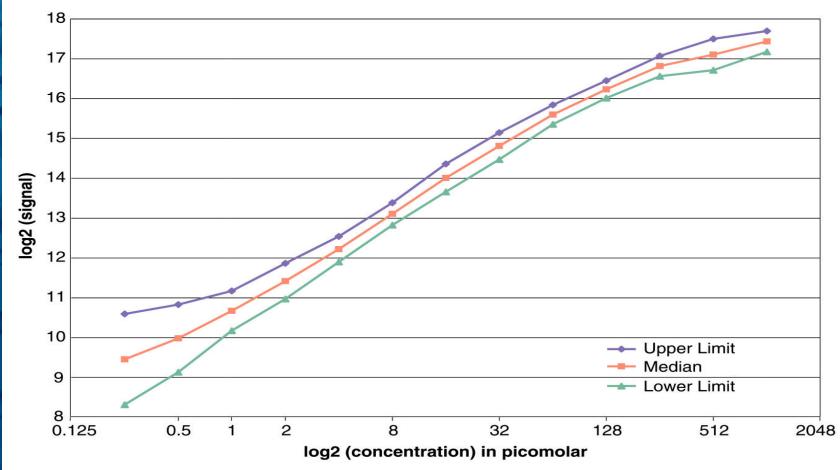
Disadvantage

- Limited complexity
- Work to generate and characterize
- QC the spikes

Scope:

quantitatively assess most aspects of pathway:

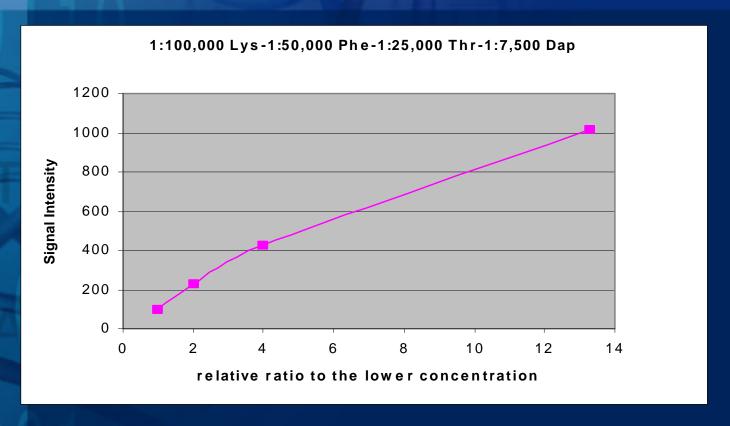
Latin Square Experimental Design


Groups of transcripts pM concentration

GeneChip experiments

	Α	В	С	D	Е	F	G	н		J	K	L	M	N
		_ D	/	ט				П	-	J	N.		IVI	IN
1_	0	0.25	0.5	1	2	4	8	16	32	64	128	256	512	1024
2	0.25	0.5	1	2	4	8	16	32	64	128	256	512	1024	0
3	0.5	1	2	4	8	16	32	64	128	256	512	1024	0	0.25
4	1	2	4	8	16	32	64	128	256	512	1024	0	0.25	0.5
5	2	4	8	16	32	64	128	256	512	1024	0	0.25	0.5	1
6	4	8	16	32	64	128	256	512	1024	0	0.25	0.5	1	2
7	8	16	32	64	128	256	512	1024	0	0.25	0.5	1	2	4
8	16	32	64	128	256	512	1024	0	0.25	0.5	1	2	4	8
9	32	64	128	256	512	1024	0	0.25	0.5	1	2	4	8	16
10	64	128	256	512	1024	0	0.25	0.5	1	2	4	8	16	32
11	128	256	512	1024	0	0.25	0.5	1	2	4	8	16	32	64
12	256	512	1024	0	0.25	0.5	1	2	4	8	16	32	64	128
13	512	1024	0	0.25	0.5	1	2	4	8	16	32	64	128	256
14	1024	0	0.25	0.5	1	2	4	8	16	32	64	128	256	512

Signal is near-linear and has stabilized variance in the middle range of concentrations


Approximate 95% Confidence Interval for MAS 5.0 Signal on Human Latin Square (computed using median absolute deviation)

Upper and lower limits refer to 95% confidence intervals

Poly A+ Spikes example

1:100,000 (1) Lys What can be assessed: Phe

1: 50,000 (2) Sensitivity

1: 25,000 (4) Thr Quantitative accuracy and precision Dap

7,500 (13) Dynamic range

Complex Sample Discussion

- Advantage: Complexity high and therefore cover larger number of probes on array
 - Process/system QC
 - Cross-platform comparisons

Disadvantage

- Thorough characterization of reference sample required. (know the 'right answer')
- Parallel to sample of interest (not 'in-sample')
- QC of the QC tool (lot to lot variability)
- Pooling different sources of RNA

Scope:

- Reference sample for competitive hyb expts.
- Process QC (used at regular intervals in parallel to samples in expt)

Complex Sample Example: Coverage

	Mix 1 (5 Tissue Pool)	Mix 2 (10 Cell line Pool)	Single Tissue Source
% Present	51.50%	52.10%	53.50%
False Change	0.07%	0.05%	0.05%

Averages of n=4

Single Tissue source: human Placenta

All expts done with HGU133A arrays

- Mixed source RNA does not seem to increase coverage on the array
- Mixed source RNA harder to reproducibly produce lot to lot
- Could not perform RNA inter-lot reproducibility

Conclusions

- Reasonably complex procedure with many steps to control
 - RNA spikes used to assess and limit variability at most stages
 - Sample acquisition ('armored' RNA?)
 - Complex sample for overall process QC
- RNA spikes
 - Use of labeled and unlabeled transcripts
 - Vary according to sequence, length, and concentration
 - Use strategy appropriate for each stage

